IniziaInizia gratis

Using and finding missing values

When working with missing data, there are a couple of commands that you should be familiar with - firstly, you should be able to identify if there are any missing values, and where these are.

Using the any_na() and are_na() tools, identify which values are missing.

Questo esercizio fa parte del corso

Dealing With Missing Data in R

Visualizza il corso

Istruzioni dell'esercizio

  • Create a vector, x, which has the values NA, NaN, Inf, ".", and "missing".
  • Pass a vector x to any_na() and are_na() to find and explore which ones are missing.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Create x, a vector, with values NA, NaN, Inf, ".", and "missing"
x <- c(___, ___, ___, ___, ___)

# Use any_na() and are_na() on to explore the missings
any_na(___)
are_na(___)
Modifica ed esegui il codice