IniziaInizia gratis

Nabular data and summarising by missingness

In this exercise, we are going to explore how to use nabular data to explore the variation in a variable by the missingness of another.

We are going to use the oceanbuoys dataset from naniar, and then create multiple plots of the data using facets.

This allows you to explore different layers of missingness.

Questo esercizio fa parte del corso

Dealing With Missing Data in R

Visualizza il corso

Istruzioni dell'esercizio

  • Explore the distribution of wind east west (wind_ew) for the missingness of air temperature using geom_density() and faceting by the missingness of air temperature (air_temp_c_NA).
  • Build upon this visualization by filling by the missingness of humidity (humidity_NA).

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Explore the distribution of wind east west (wind_ew) for the missingness of air temperature 
# using geom_density() and faceting by the missingness of air temperature (air_temp_c_NA).
___ %>%
  bind_shadow(___) %>%
  ggplot(aes(x = ___)) + 
  geom_density() + 
  facet_wrap(~___)

# Build upon this visualization by coloring by the missingness of humidity (humidity_NA).
___ %>%
  ___(___) %>%
  ggplot(aes(x = ___,
             color = ___)) + 
  geom_density() + 
  ___(~___)
Modifica ed esegui il codice