Visualizing missing cases and variables
To get a clear picture of the missingness across variables and cases, use gg_miss_var() and gg_miss_case(). These are the visual counterpart to miss_var_summary() and miss_case_summary().
These can be split up into multiple plots with one for each category by choosing a variable to facet by.
Questo esercizio fa parte del corso
Dealing With Missing Data in R
Istruzioni dell'esercizio
Using the riskfactors dataset:
- Visualize the number of missings in cases using
gg_miss_case(). - Explore the number of missings in cases using
gg_miss_case()and facet by the variableeducation. - Visualize the number of missings in variables using
gg_miss_var(). - Explore the number of missings in variables using
gg_miss_var()and facet by the variableeducation.
What do you notice in the visualizations of the whole data compared to the faceting?
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Visualize the number of missings in cases using `gg_miss_case()`
gg_miss_case(___)
# Explore the number of missings in cases using `gg_miss_case()`
# and facet by the variable `education`
gg_miss_case(___, facet = ___)
# Visualize the number of missings in variables using `gg_miss_var()`
gg_miss_var(___)
# Explore the number of missings in variables using `gg_miss_var()`
# and facet by the variable `education`
___(___, facet = ___)