MulaiMulai sekarang secara gratis

Visualizing auto performance uncertainty

Confidence intervals are a very important visual indicator of model fit. Here you'll practice changing the appearance of confidence intervals and transforming the scale of partial effects plots.

Latihan ini adalah bagian dari kursus

Nonlinear Modeling with Generalized Additive Models (GAMs) in R

Lihat Kursus

Petunjuk latihan

  • Plot the model (mod) that uses the mpg data, plotting only the partial effect of weight. Make the confidence interval shaded and "hotpink" in color.
  • Make another plot of the weight partial effect, this time shifting the scale by the value of the intercept using the shift argument, and including the uncertainty of the model intercept using the seWithMean argument.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

library(mgcv)
# Fit the model
mod <- gam(hw.mpg ~ s(weight) + s(rpm) + s(price) + comp.ratio, 
           data = mpg, method = "REML")

# Plot the weight effect with colored shading
plot(mod, select = 1, ___)

# Make another plot adding the intercept value and uncertainty
plot(mod, select = 1, ___)
Edit dan Jalankan Kode