MulaiMulai sekarang secara gratis

Frequency analysis of product reviews

You now have access to a larger dataset of TechZone product reviews. Just like before, you've preprocessed and transformed the reviews into a BoW representation X. Your task now is to analyze the word frequencies and identify the most common terms in the dataset.

To help with the analysis, a helper function called get_top_ten() is provided. It takes in a list of words and their corresponding counts, and returns the 10 most frequent words and their counts.

Latihan ini adalah bagian dari kursus

Natural Language Processing (NLP) in Python

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

def preprocess(text):
    text = text.lower()
    tokens = word_tokenize(text)
    tokens = [word for word in tokens if word not in string.punctuation]
    return " ".join(tokens)
  
cleaned_reviews = [preprocess(review) for review in product_reviews]
X = vectorizer.fit_transform(cleaned_reviews)

# Get word counts
word_counts = np.____(X.____, axis=0)
# Get words
words = vectorizer.____

top_words_with_stopwords, top_counts_with_stopwords = get_top_ten(words, word_counts)
print(top_words_with_stopwords, top_counts_with_stopwords)
Edit dan Jalankan Kode