MulaiMulai sekarang secara gratis

Exploring and transforming shelf life data

Understanding the distribution of different variables in our data is a key aspect of any data work including experimental analysis. The food_preservation dataset captures various food preservation methods and their impact on nutrient retention and shelf life. A crucial aspect of this data involves the shelf life of preserved foods, which can vary significantly across different preservation methods and food types.

The food_preservation DataFrame, from scipy.stats import boxcox, pandas as pd, numpy as np, seaborn as sns, and matplotlib.pyplot as plt have been loaded for you.

Latihan ini adalah bagian dari kursus

Experimental Design in Python

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Visualize the original ShelfLife distribution
sns.____(____['____'])
plt.title('Original Shelf Life Distribution')
plt.show()
Edit dan Jalankan Kode