MulaiMulai sekarang secara gratis

Techniques for detecting and correcting data drift

In machine learning, it's essential to understand how to maintain a deployed model's performance over time. One familiar challenge practitioners face is data drift, which occurs when the distribution of input data changes. Data drift can lead to decreased model performance and inaccurate predictions.

What are the appropriate steps for detecting and correcting data drift in machine learning models? (Select all that apply).

Latihan ini adalah bagian dari kursus

End-to-End Machine Learning

Lihat Kursus

Latihan interaktif praktis

Ubah teori menjadi tindakan dengan salah satu latihan interaktif kami.

Mulai berolahraga