MulaiMulai sekarang secara gratis

Adafactor with Trainer

You're training a Transformer model with billions of parameters for your language translation service. It is straining your computational resources, so you decide to try the Adafactor optimizer to reduce memory requirements compared to AdamW. Prepare the Trainer for Adafactor!

Some training objects have been pre-loaded, including model, train_dataset, validation_dataset, and compute_metrics.

Latihan ini adalah bagian dari kursus

Efficient AI Model Training with PyTorch

Lihat Kursus

Petunjuk latihan

  • Specify Adafactor as an optimizer in TrainingArguments.
  • Pass in the optimizer state to print the size.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Specify Adafactor as an optimizer
training_args = TrainingArguments(output_dir="./results",
                                  evaluation_strategy="epoch",
                                  ____="____")

trainer = Trainer(model=model,
                  args=training_args,
                  train_dataset=train_dataset,
                  eval_dataset=validation_dataset,
                  compute_metrics=compute_metrics)
trainer.train()

# Pass in the optimizer state
total_size_megabytes, total_num_elements = compute_optimizer_size(____.____.____.values())
print(f"\nNumber of optimizer parameters: {total_num_elements:,}\nOptimizer size: {total_size_megabytes:.0f} MB")  
Edit dan Jalankan Kode