Mixed precision training with Accelerator
You want to simplify your PyTorch loop for mixed precision training of your language translation model by using Accelerator. Build the new training loop to leverage Accelerator!
Some objects have been preloaded: dataset, model, dataloader, and optimizer.
Latihan ini adalah bagian dari kursus
Efficient AI Model Training with PyTorch
Petunjuk latihan
- Enable mixed precision training using FP16 in
Accelerator. - Prepare training objects for mixed precision training before the loop.
- Compute the gradients of the loss for mixed precision training.
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
# Enable mixed precision training using FP16
accelerator = Accelerator(____="____")
# Prepare training objects for mixed precision training
model, optimizer, train_dataloader, lr_scheduler = ____.____(____, ____, ____, ____)
for batch in train_dataloader:
inputs, targets = batch["input_ids"], batch["labels"]
outputs = model(inputs, labels=targets)
loss = outputs.loss
# Compute the gradients of the loss
____.____(loss)
optimizer.step()
optimizer.zero_grad()