MulaiMulai sekarang secara gratis

AdamW with Accelerator

You want to customize your training loop using Accelerator and use AdamW as a benchmark optimizer for your language translation model. Build the training loop to use AdamW.

Some training objects have been pre-loaded and defined, including model, train_dataloader, and accelerator.

Latihan ini adalah bagian dari kursus

Efficient AI Model Training with PyTorch

Lihat Kursus

Petunjuk latihan

  • Prepare training objects for distributed training before the loop.
  • Update the model parameters in the training loop.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

optimizer = AdamW(params=model.parameters())

# Prepare training objects for distributed training
model, optimizer, train_dataloader = ____.____(model, optimizer, train_dataloader)

for batch in train_dataloader:
    inputs, targets = batch["input_ids"], batch["labels"]
    outputs = model(inputs, labels=targets)
    loss = outputs.loss
    accelerator.backward(loss)
    # Update the model parameters
    ____.____()
    optimizer.zero_grad()
    print(f"Loss = {loss}")
Edit dan Jalankan Kode