Setting up the reward trainer
Your project continues and you now have the model
and config
objects ready to start training the reward model.
The training and evaluation datasets have been preloaded as train_data
and eval_data
. The RewardTrainer
has been imported from trl
.
Cet exercice fait partie du cours
Reinforcement Learning from Human Feedback (RLHF)
Instructions
- Initialize the
RewardTrainer()
by assigning the model, tokenizer, training dataset, evaluation dataset, and reward configuration to its attributes.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
tokenizer = AutoTokenizer.from_pretrained("openai-gpt")
model = AutoModelForSequenceClassification.from_pretrained('openai-gpt')
config = RewardConfig(output_dir='output_dir', max_length=60)
# Initialize the reward trainer
trainer = ____