CommencerCommencer gratuitement

Implementing an active learning pipeline

In this exercise, you'll set up an active learner using a logistic regression model and an uncertainty sampling strategy.

The dataset has been loaded with X_labeled for labeled training data, X_unlabeled for unlabeled training data, and y_labeled for labels.

The required libraries have been imported: ActiveLearner from modAL.models, uncertainty_sampling from modAL.uncertainty and LogisticRegression from sklearn.linear_model.

Cet exercice fait partie du cours

Reinforcement Learning from Human Feedback (RLHF)

Afficher le cours

Instructions

  • Initialize an ActiveLearner object.
  • Use LogisticRegression as the estimator.
  • Use uncertainty sampling as the query strategy.
  • Initialize the learner with labeled training data.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Create the active learner object
learner = ____(
    # Set the estimator 
    ____,
    # Set the query strategy
    ____,
    # Pass the labeled data
    X_training=____, y_training=____
)
Modifier et exécuter le code