CommencerCommencer gratuitement

Mitigating negative KL divergence

You were fine-tuning the model using RLHF techniques and noticed that the model's performance has worsened compared to the base model. You suspect this is due to negative KL divergence, so you want to set the correct generation parameters to prevent this issue.

The tokenizer has been pre-imported.

Cet exercice fait partie du cours

Reinforcement Learning from Human Feedback (RLHF)

Afficher le cours

Instructions

  • Set top_k and min_length to values that help avoid KL divergence.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

generation_kwargs = {
    # Set min length and top k parameters
    ____, 
  	"top_p": 1.0,
  	"do_sample": True,  
  	"pad_token_id": tokenizer.eos_token_id, 
  	"max_new_tokens": 32}
Modifier et exécuter le code