Constant Fill
Constant fill is a useful method of imputation when the missing, NA values in a dataset can be assumed to be a certain value. Sometimes when moving data between different platforms and software, certain values in the data may be 'lost' or flagged as NA erroneously. Using constant fill imputation lets you replace these missing values with a default.
In this exercise, you'll impute missing values for the car_sales time series, which represents daily car sales for an employee at a car dealership.
Cet exercice fait partie du cours
Manipulating Time Series Data in R
Instructions
Determine the total number of
NAvalues in thecar_salestime series.Use constant fill imputation to fill the missing values of
car_saleswith0; assign this to thecar_sales_filledvariable.Autoplot the
car_sales_filledtime series.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Add together the number of NA values
___
# Fill in missing values with zero
___ <- ___
# Autoplot the filled time series
autoplot(___) +
labs(y = "Daily Car Sales") +
theme_light()