CommencerCommencer gratuitement

Separate numerical and categorical columns

In the last exercise, you have explored the dataset characteristics and are ready to do some data pre-processing. You will now separate categorical and numerical variables from the telco_raw DataFrame with a customized categorical vs. numerical unique value count threshold. The pandas module has been loaded for you as pd.

The raw telecom churn dataset telco_raw has been loaded for you as a pandas DataFrame. You can familiarize with the dataset by exploring it in the console.

Cet exercice fait partie du cours

Machine Learning for Marketing in Python

Afficher le cours

Instructions

  • Store customerID and Churn column names.
  • Assign to categorical the column names that have less than 5 unique values.
  • Remove target from the list.
  • Assign to numerical all column names that are not in the custid, target and categorical.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Store customerID and Churn column names
custid = ['___']
target = ['___']

# Store categorical column names
categorical = telco_raw.___()[telco_raw.nunique() < ___].keys().tolist()

# Remove target from the list of categorical variables
categorical.remove(___[0])

# Store numerical column names
numerical = [x for x in telco_raw.___ if x not in custid + ___ + categorical]
Modifier et exécuter le code