CommencerCommencer gratuitement

Analysing TPOT's stability

You will now see the random nature of TPOT by constructing the classifier with different random states and seeing what model is found to be best by the algorithm. This assists to see that TPOT is quite unstable when not run for a reasonable amount of time.

Cet exercice fait partie du cours

Hyperparameter Tuning in Python

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Create the tpot classifier 
tpot_clf = TPOTClassifier(generations=2, population_size=4, offspring_size=3, scoring='accuracy', cv=2,
                          verbosity=2, random_state=____)

# Fit the classifier to the training data
tpot_clf.fit(X_train, y_train)

# Score on the test set
print(tpot_clf.score(X_test, y_test))
Modifier et exécuter le code