Splitting & Exploding
Being able to take a compound field like GARAGEDESCRIPTION and massaging it into something useful is an involved process. It's helpful to understand early what value you might gain out of expanding it. In this example, we will convert our string to a list-like array, explode it and then inspect the unique values.
Cet exercice fait partie du cours
Feature Engineering with PySpark
Instructions
- Import the needed functions split()andexplode()frompyspark.sql.functions
- Use split()to create a new columngarage_listby splittingdf['GARAGEDESCRIPTION']on ', ' which is both a comma and a space.
- Create a new record for each value in the df['garage_list']usingexplode()and assign it a new columnex_garage_list
- Use distinct()to get unique values ofex_garage_listandshowthe 100 first rows, truncating them at 50 characters to display the values.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Import needed functions
____ ____ ____ ____, ____
# Convert string to list-like array
df = df.withColumn(____, ____(____, ____))
# Explode the values into new records
ex_df = df.withColumn(____, ____(____))
# Inspect the values
ex_df[['ex_garage_list']].____().____(100, ____=____)