Evaluating & Comparing Algorithms
Now that we've created a new model with GBTRegressor its time to compare it against our baseline of RandomForestRegressor. To do this we will compare the predictions of both models to the actual data and calculate RMSE and R^2.
Cet exercice fait partie du cours
Feature Engineering with PySpark
Instructions
- Import RegressionEvaluatorfrompyspark.ml.evaluationso it is available for use later.
- Initialize RegressionEvaluatorby settinglabelColto our actual data,SALESCLOSEPRICEandpredictionColto our predicted data,Prediction_Price
- To calculate our metrics, call evaluateonevaluatorwith the prediction valuespredsand create a dictionary with keyevaluator.metricNameand value ofrmse, do the same for ther2metric.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
from ____ import ____
# Select columns to compute test error
evaluator = ____(____=____, 
                                ____=____)
# Dictionary of model predictions to loop over
models = {'Gradient Boosted Trees': gbt_predictions, 'Random Forest Regression': rfr_predictions}
for key, preds in models.items():
  # Create evaluation metrics
  rmse = evaluator.____(____, {____: ____})
  r2 = evaluator.____(____, {____: ____})
  
  # Print Model Metrics
  print(key + ' RMSE: ' + str(rmse))
  print(key + ' R^2: ' + str(r2))