The clipped probability ratio
You will now implement the clipped probability ratio, an essential component of the PPO objective function.
For reference, the probability ratio is defined as: $$\frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)}$$
And the clipped probability ratio is: \(\mathrm{clip}(r_t(\theta), 1-\varepsilon, 1+\varepsilon)\).
Cet exercice fait partie du cours
Deep Reinforcement Learning in Python
Instructions
- Obtain the action probability
prob
fromaction_log_prob
, andprob_old
fromaction_log_prob_old
. - Detach the old action log prob from the torch gradient computation graph.
- Calculate the probability ratio.
- Clip the surrogate objective.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
log_prob = torch.tensor(.5).log()
log_prob_old = torch.tensor(.4).log()
def calculate_ratios(action_log_prob, action_log_prob_old, epsilon):
# Obtain prob and prob_old
prob = ____
prob_old = ____
# Detach the old action log prob
prob_old_detached = ____.____()
# Calculate the probability ratio
ratio = ____ / ____
# Apply clipping
clipped_ratio = torch.____(ratio, ____, ____)
print(f"+{'-'*29}+\n| Ratio: {str(ratio)} |\n| Clipped ratio: {str(clipped_ratio)} |\n+{'-'*29}+\n")
return (ratio, clipped_ratio)
_ = calculate_ratios(log_prob, log_prob_old, epsilon=.2)