Build your cross validation pipeline
Now that we have our data, our train/test splits, our model, and our hyperparameter values, let's tell Spark how to cross validate our model so it can find the best combination of hyperparameters and return it to us.
Este ejercicio forma parte del curso
Building Recommendation Engines with PySpark
Instrucciones del ejercicio
- Create a
CrossValidatorcalledcvwith ouralsmodel as the estimator, settingestimatorParamMapsto theparam_gridyou just built. Tell Spark that theevaluatorto be used is the"evaluator"we built previously. Set thenumFoldsto 5. - Confirm that our
cvwas built by printingcv.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Build cross validation using CrossValidator
____ = CrossValidator(estimator=____, estimatorParamMaps=____, evaluator=____, numFolds=____)
# Confirm cv was built
print(____)