ComenzarEmpieza gratis

Adjust model complexity

To make good predictions, you need to adjust the complexity of your model. Simple models can only represent simple data structures, while complex models can represent fine-grained data structures.

In this exercise, you are going to create trees of different complexities by altering the hyperparameters of a regression tree.

The training data chocolate_train is pre-loaded in your workspace.

Este ejercicio forma parte del curso

Machine Learning with Tree-Based Models in R

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Create a model having only one split
chocolate_model <- ___(___) %>% 
		set_mode("regression") %>%
		set_engine("rpart") %>% 
		fit(final_grade ~ ., data = chocolate_train)

chocolate_model
Editar y ejecutar código