From probabilites to confusion matrix
Conversely, say you want to be really certain that your model correctly identifies all the mines as mines. In this case, you might use a prediction threshold of 0.10, instead of 0.90.
The code pattern for cutting probabilities into predicted classes, then calculating a confusion matrix, was shown in Exercise 7 of this chapter.
Este ejercicio forma parte del curso
Machine Learning with caret in R
Instrucciones del ejercicio
- Use
ifelse()to create a character vector,m_or_rthat is the positive class,"M", whenpis greater than 0.1, and the negative class,"R", otherwise. - Convert
m_or_rto be a factor,p_class, with levels the same as those oftest[["Class"]]. - Make a confusion matrix with
confusionMatrix(), passingp_classand the"Class"column from thetestdataset.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# If p exceeds threshold of 0.1, M else R: m_or_r
# Convert to factor: p_class
# Create confusion matrix