ComenzarEmpieza gratis

LOF vs kNN

It is common to look first at the points with highest anomaly scores before taking any action. When several algorithms are used, the points with highest scores may differ.

In this final exercise, you'll calculate new LOF and kNN distance scores for the wine data, and print the highest scoring point for each.

Este ejercicio forma parte del curso

Introduction to Anomaly Detection in R

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Scaled wine data
wine_scaled <- scale(wine)

# Calculate distance matrix
wine_nn <- 

# Append score column to data
wine$score_knn <-
Editar y ejecutar código