Sampling from the best continuous distribution
Random sampling from a well-fitting probability distribution helps maintain privacy. At the same time, it allows authorized parties to conduct an accurate statistical analysis of the data.
In this exercise, you will anonymize the column monthly_income from the IBM dataset. In the previous lesson, you determined the exponnorm continuous distribution to be the best fit. Use it to model the incomes.
The dataset is available as hr.
Este ejercicio forma parte del curso
Data Privacy and Anonymization in Python
Instrucciones del ejercicio
- Import the
statsmodule from thescipypackage. - Fit the
exponnormdistribution to the continuous variablemonthly_incometo obtain the parameters of the distribution and later generate the samples. - Sample from the
exponnormdistribution and replacemonthly_incomeusing the.rvs()method. Specify the size to be the same as the length of the column. - Round the salaries to their closest integer.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Import stats from scipy
____
# Fit the exponnorm distribution to the continuous variable monthly income
params = ____
# Sample from the exponnorm distribution and replace monthly income
hr['monthly_income'] = ____
# Round the salaries to their closest integer
hr['monthly_income'] = ____
# See the resulting dataset
print(hr.head())