ComenzarEmpieza gratis

Suppression of sensitive attributes

In this exercise, you will identify a sensitive PII variable from a dataset loaded as a DataFrame clients_df.

Then, you will apply attribute suppression to the SPII variable. Remember that this is the strongest type of anonymization because there is no way of recovering any information from the attribute.

For this exercise and the remainder of the course, pandas will be imported for you and aliased as pd.

Este ejercicio forma parte del curso

Data Privacy and Anonymization in Python

Ver curso

Ejercicio interactivo práctico

Pon en práctica la teoría con uno de nuestros ejercicios interactivos

Empezar ejercicio