Checking for missing values
Identifying missing values is important for analysis. Using the same dataset, you will get the total number of missing values by iterating over both rows and columns within the dataset. Subject to finding missing values, further methods are needed to handle such values, such as using Imputer
from sklearn
. Missing values need to be handled, otherwise it will be difficult to conduct proper CTR prediction.
Sample data in DataFrame form is loaded as df
. pandas
as pd
is also available in your workspace.
Diese Übung ist Teil des Kurses
Predicting CTR with Machine Learning in Python
Anleitung zur Übung
- Print a basic summary of columns using
.info()
. - Print the missing values by columns, using
.isnull()
(don't forget the parentheses!). - Print the total number of missing values by rows using
axis = 1
and the.sum()
.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
# Print info
print(df.____)
# Print missing values by column
print(df.____.sum(____ = 0))
# Print total number of missing values in rows
print(df.____.sum(____ = 1).____)