Evaluating precision and ROI
In this exercise, you build upon the previous exercise and run an MLPClassifier and compare it to three of the other classifiers run earlier. For each classifier, you will compute the precision and implied ROI on ad spend. As before, we have training and testing splits for X and y as X_train, X_test for X and y_train, y_test for y respectively and the features have already been standardized.
Diese Übung ist Teil des Kurses
Predicting CTR with Machine Learning in Python
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Create list of classifiers
names = ['Logistic Regression', 'Decision Tree',
'Random Forest', 'Multi-Layer Perceptron']
clfs = [LogisticRegression(),
DecisionTreeClassifier(), RandomForestClassifier(),
MLPClassifier(hidden_layer_sizes = (5, ), max_iter = 40)]
# Fit each classifier and evaluate AUC of ROC curve
for name, classifier in zip(names, clfs):
classifier.____(____, ____)
y_score = classifier.____(X_test)
y_pred = classifier.____(X_test)
prec = ____(____, y_pred, average = 'weighted')
print("Precision for %s: %s " %(name, prec))