CV fine-tuning: trainer configuration
Now that you have prepared the dataset and adapted a pretrained model to the new classes, it is time to configure your trainer.
The TrainingArguments
and Trainer
have been loaded from the transformers
library. The model (model
) and dataset (dataset
) have been loaded as you previously configured them.
Diese Übung ist Teil des Kurses
Multi-Modal Models with Hugging Face
Anleitung zur Übung
- Adjust the learning rate to
6e-5
. - Provide the model, training data, and test data to the
Trainer
instance.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
training_args = TrainingArguments(
output_dir="dataset_finetune",
# Adjust the learning rate
____,
gradient_accumulation_steps=4,
num_train_epochs=3,
push_to_hub=False
)
trainer = Trainer(
# Provide the model and datasets
model=____,
args=training_args,
data_collator=data_collator,
train_dataset=____,
eval_dataset=____,
processing_class=image_processor,
compute_metrics=compute_metrics,
)