LoslegenKostenlos loslegen

Using custom trainControl

Now that you have a custom trainControl object, it's easy to fit caret models that use AUC rather than accuracy to tune and evaluate the model. You can just pass your custom trainControl object to the train() function via the trControl argument, e.g.:

train(<standard arguments here>, trControl = myControl)

This syntax gives you a convenient way to store a lot of custom modeling parameters and then use them across multiple different calls to train(). You will make extensive use of this trick in Chapter 5.

Diese Übung ist Teil des Kurses

Machine Learning with caret in R

Kurs anzeigen

Anleitung zur Übung

  • Use train() to predict Class from all other variables in the Sonar data (that is, Class ~ .). It should be a glm model (that is, set method to "glm") using your custom trainControl object, myControl. Save the result to model.
  • Print the model to the console and examine its output.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Train glm with custom trainControl: model



# Print model to console
Code bearbeiten und ausführen