Batch normalizing a familiar model
Remember the digits dataset you trained in the first exercise of this chapter?
 
A multi-class classification problem that you solved using softmax and 10 neurons in your output layer.
You will now build a new deeper model consisting of 3 hidden layers of 50 neurons each, using batch normalization in between layers. 
The kernel_initializer parameter is used to initialize weights in a similar way.
Diese Übung ist Teil des Kurses
Introduction to Deep Learning with Keras
Anleitung zur Übung
- Import 
BatchNormalizationfromtensorflow.keraslayers. - Build your deep network model, use 50 neurons for each hidden layer adding batch normalization in between layers.
 - Compile your model with stochastic gradient descent, 
sgd, as an optimizer. 
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Import batch normalization from keras layers
from tensorflow.____.____ import ____
# Build your deep network
batchnorm_model = ____
batchnorm_model.add(Dense(____, input_shape=(64,), activation='relu', kernel_initializer='normal'))
batchnorm_model.add(____)
batchnorm_model.add(Dense(____, activation='relu', kernel_initializer='normal'))
batchnorm_model.add(____)
batchnorm_model.add(Dense(____, activation='relu', kernel_initializer='normal'))
batchnorm_model.add(____)
batchnorm_model.add(Dense(10, activation='softmax', kernel_initializer='normal'))
# Compile your model with sgd
batchnorm_model.compile(optimizer=____, loss='categorical_crossentropy', metrics=['accuracy'])