Exploring dollar bills
You will practice building classification models in Keras with the Banknote Authentication dataset.
Your goal is to distinguish between real and fake dollar bills. In order to do this, the dataset comes with 4 features: variance,skewness,kurtosis and entropy. These features are calculated by applying mathematical operations over the dollar bill images. The labels are found in the dataframe's class column.
A pandas DataFrame named banknotes is ready to use, let's do some data exploration!
Diese Übung ist Teil des Kurses
Introduction to Deep Learning with Keras
Anleitung zur Übung
- Import 
seabornassns. - Use 
seaborn'spairplot()onbanknotesand sethueto be the name of the column containing the labels. - Generate descriptive statistics for the banknotes authentication data.
 - Count the number of observations per label with 
.value_counts(). 
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Import seaborn
import ____ as ____
# Use pairplot and set the hue to be our class column
sns.____(____, hue=____) 
# Show the plot
plt.show()
# Describe the data
print('Dataset stats: \n', banknotes.____)
# Count the number of observations per class
print('Observations per class: \n', banknotes[____].____)