LoslegenKostenlos loslegen

Using a real world model

Okay, so Ivy's picture is ready to be used by ResNet50. It is stored in img_ready and now looks like this:

ResNet50 is a model trained on the Imagenet dataset that is able to distinguish between 1000 different labeled objects. ResNet50 is a deep model with 50 layers, you can check it in 3D here.

ResNet50 and decode_predictions have both been imported from tensorflow.keras.applications.resnet50 for you.

It's time to use this trained model to find out Ivy's breed!

Diese Übung ist Teil des Kurses

Introduction to Deep Learning with Keras

Kurs anzeigen

Anleitung zur Übung

  • Instantiate a ResNet50 model, setting the weights parameter to be 'imagenet'.
  • Use the model to predict on your processed image.
  • Decode the first 3 predictions with decode_predictions().

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Instantiate a ResNet50 model with 'imagenet' weights
model = ____(weights=____)

# Predict with ResNet50 on your already processed img
preds = ____.____(____)

# Decode the first 3 predictions
print('Predicted:', ____(____, top=____)[0])
Code bearbeiten und ausführen