LoslegenKostenlos loslegen

Anomaly score

Your visualization suggested that thyroid disease could be detected from anomalous hormone measurements.

In this exercise you'll use an isolation forest to generate an anomaly score for thyroid levels, and compare the resulting score against the true disease status.

Diese Übung ist Teil des Kurses

Introduction to Anomaly Detection in R

Kurs anzeigen

Anleitung zur Übung

  • Fit an isolation forest to the thyroid hormone measurements.
  • Generate anomaly scores for the thyroid data and append the result to thyroid as the new column iso_score.
  • Use the boxplot() function to compare the score distribution for patients with and without thyroid disease, using the label column.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

# Fit isolation forest
thyroid_forest <- iForest(___, ___ = 200, phi = 100)

# Anomaly score 
thyroid$iso_score <- predict(thyroid_forest, ___)

# Boxplot of the anomaly score against labels
boxplot(___ ~ ___, ___, col = "olivedrab4")
Code bearbeiten und ausführen