Mapping feature indices with feature names
In the lesson video, we had seen that CountVectorizer doesn't necessarily index the vocabulary in alphabetical order. In this exercise, we will learn to map each feature index to its corresponding feature name from the vocabulary.
We will use the same three sentences on lions from the video. The sentences are available in a list named corpus and has already been printed to the console.
Diese Übung ist Teil des Kurses
Feature Engineering for NLP in Python
Anleitung zur Übung
- Instantiate a
CountVectorizerobject. Name itvectorizer. - Using
fit_transform(), generatebow_matrixforcorpus. - Using the
get_feature_names()method, map the column names to the corresponding word in the vocabulary.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Create CountVectorizer object
vectorizer = ____
# Generate matrix of word vectors
bow_matrix = vectorizer.____(____)
# Convert bow_matrix into a DataFrame
bow_df = pd.DataFrame(bow_matrix.toarray())
# Map the column names to vocabulary
bow_df.columns = vectorizer.____
# Print bow_df
print(bow_df)