Sampling from the best continuous distribution
Random sampling from a well-fitting probability distribution helps maintain privacy. At the same time, it allows authorized parties to conduct an accurate statistical analysis of the data.
In this exercise, you will anonymize the column monthly_income from the IBM dataset. In the previous lesson, you determined the exponnorm continuous distribution to be the best fit. Use it to model the incomes.
The dataset is available as hr.
Diese Übung ist Teil des Kurses
Data Privacy and Anonymization in Python
Anleitung zur Übung
- Import the
statsmodule from thescipypackage. - Fit the
exponnormdistribution to the continuous variablemonthly_incometo obtain the parameters of the distribution and later generate the samples. - Sample from the
exponnormdistribution and replacemonthly_incomeusing the.rvs()method. Specify the size to be the same as the length of the column. - Round the salaries to their closest integer.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Import stats from scipy
____
# Fit the exponnorm distribution to the continuous variable monthly income
params = ____
# Sample from the exponnorm distribution and replace monthly income
hr['monthly_income'] = ____
# Round the salaries to their closest integer
hr['monthly_income'] = ____
# See the resulting dataset
print(hr.head())