Epsilon (ϵ): the magic number
One of differential privacy's great successes is that it reduces the essential trade-off in privacy-preserving data analysis, accuracy versus privacy, to a single number.
In differential privacy systems, if the value of epsilon (\(\epsilon\)) is a small number, what does it means for the resulting data?
Diese Übung ist Teil des Kurses
Data Privacy and Anonymization in Python
Interaktive Übung
In dieser interaktiven Übung kannst du die Theorie in die Praxis umsetzen.
Übung starten