Get startedGet started for free

Creating a new report using a parameter

Now that you've added a parameter to the document, you'll create a new report for Bangladesh from the investment_services_projects data using the country parameter.

Before knitting the report, you'll review and modify the text of the document to ensure that the knit report will reflect the country that is specified in the parameter.

This exercise is part of the course

Reporting with R Markdown

View Course

Exercise instructions

  • Replace Brazil in the document headers with a reference to the country parameter.
  • Add the country parameter to the "Investment Report" title field of the YAML header so that, once the file is knit, the report title will render as "Investment Report for Projects in Bangladesh".
  • Using the country parameter, create a new Investment Report file for Bangladesh.

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

{"investment_report.Rmd":"---\ntitle: \"Investment Report\"\noutput: \n  html_document:\n    toc: true\n    toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n  country: Brazil \n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n  geom_line() +\n  labs(\n    title = \"Investment Annual Summary\",\n    x = \"Fiscal Year\",\n    y = \"Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n  filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  )\n```\n\n### Investment Projects in Brazil in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `country_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-investment-projects-2018}\ncountry_investment_projects_2018 <- investment_services_projects %>%\n  filter(country == params$country,\n         date_disclosed >= \"2017-07-01\",\n         date_disclosed <= \"2018-06-30\")\n\nggplot(country_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n  geom_point() +\n  labs(\n    title = \"Investment Services Projects in 2018\",\n    x = \"Date Disclosed\",\n    y = \"Total IFC Investment in Dollars in Millions\"\n  ) \n```\n\n\n"}
Edit and Run Code