Adding multiple parameters to the report
Previously, you added a parameter for country
to create new reports to summarize information about the investment projects for any country included in the investment_services_projects
data. Now, you'll add parameters for the fiscal year and modify the existing code so that you can create new reports about the investment projects for any country and fiscal year from the investment_services_projects
data.
This exercise is part of the course
Reporting with R Markdown
Exercise instructions
- Add an
fy
parameter for the fiscal year and list2018
as the fiscal year. - Add parameters for the
year_start
andyear_end
dates, using2017-07-01
for theyear_start
and2018-06-30
for theyear_end
of the 2018 fiscal year. - Replace date references in the
filter()
on lines64
and65
with references to theyear_start
andyear_end
parameters. - In the
country-investment-projects-2018
code chunk, rename the code chunk tocountry-annual-investment-projects
and object name and object name references in the text tocountry_annual_investment_projects
.
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
{"investment_report.Rmd":"---\ntitle: \"Investment Report for Projects in `r params$country`\"\noutput: \n html_document:\n toc: true\n toc_float: true\ndate: \"`r format(Sys.time(), '%d %B %Y')`\"\nparams:\n country: Brazil\n---\n\n```{r setup, include = FALSE}\nknitr::opts_chunk$set(fig.align = 'center', echo = TRUE)\n```\n\n```{r data, include = FALSE}\nlibrary(readr)\nlibrary(dplyr)\nlibrary(ggplot2)\n\ninvestment_annual_summary <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/d0251f26117bbcf0ea96ac276555b9003f4f7372/investment_annual_summary.csv\")\ninvestment_services_projects <- read_csv(\"https://assets.datacamp.com/production/repositories/5756/datasets/bcb2e39ecbe521f4b414a21e35f7b8b5c50aec64/investment_services_projects.csv\")\n```\n\n\n## Datasets \n\n### Investment Annual Summary\nThe `investment_annual_summary` dataset provides a summary of the dollars in millions provided to each region for each fiscal year, from 2012 to 2018.\n```{r investment-annual-summary}\nggplot(investment_annual_summary, aes(x = fiscal_year, y = dollars_in_millions, color = region)) +\n geom_line() +\n labs(\n title = \"Investment Annual Summary\",\n x = \"Fiscal Year\",\n y = \"Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country`\nThe `investment_services_projects` dataset provides information about each investment project from 2012 to 2018. Information listed includes the project name, company name, sector, project status, and investment amounts. Projects that do not have an associated investment amount are excluded from the plot.\n\n```{r country-investment-projects}\ncountry_investment_projects <- investment_services_projects %>%\n filter(country == params$country) \n\nggplot(country_investment_projects, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n )\n```\n\n### Investment Projects in `r params$country` in 2018\nThe `investment_services_projects` dataset was filtered below to focus on information about each investment project from the 2018 fiscal year, and is referred to as `country_investment_projects_2018`. Projects that do not have an associated investment amount are excluded from the plot.\n```{r country-investment-projects-2018}\ncountry_investment_projects_2018 <- investment_services_projects %>%\n filter(country == params$country,\n date_disclosed >= \"2017-07-01\",\n date_disclosed <= \"2018-06-30\") \n\nggplot(country_investment_projects_2018, aes(x = date_disclosed, y = total_investment, color = status)) +\n geom_point() +\n labs(\n title = \"Investment Services Projects\",\n x = \"Date Disclosed\",\n y = \"Total IFC Investment in Dollars in Millions\"\n ) \n```\n\n\n"}