BaşlayınÜcretsiz Başlayın

K-means for feedback clustering

You have a dataset of feedback responses, and you've used a GPT model to calculate confidence scores for each response. To identify unusual or outlier feedback, you apply k-means clustering to the low-confidence responses.

The KMeans algorithm, reviews and confidences variables, and np library have been preloaded.

Bu egzersiz

Reinforcement Learning from Human Feedback (RLHF)

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Initialize the k-means algorithm. Set the random_state to 42 for code reproducibility.
  • Calculate distances from cluster centers to identify outliers as the difference between data and the corresponding cluster centers.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

def detect_anomalies(data, n_clusters=3):
    # Initialize k-means
    ____
    clusters = kmeans.fit_predict(data)
    centers = kmeans.cluster_centers_

    # Calculate distances from cluster centers
    ____
    return distances
  
anomalies = detect_anomalies(confidences)
print(anomalies)
Kodu Düzenle ve Çalıştır