BaşlayınÜcretsiz Başlayın

Build your cross validation pipeline

Now that we have our data, our train/test splits, our model, and our hyperparameter values, let's tell Spark how to cross validate our model so it can find the best combination of hyperparameters and return it to us.

Bu egzersiz

Building Recommendation Engines with PySpark

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Create a CrossValidator called cv with our als model as the estimator, setting estimatorParamMaps to the param_grid you just built. Tell Spark that the evaluator to be used is the "evaluator" we built previously. Set the numFolds to 5.
  • Confirm that our cv was built by printing cv.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Build cross validation using CrossValidator
____ = CrossValidator(estimator=____, estimatorParamMaps=____, evaluator=____, numFolds=____)

# Confirm cv was built
print(____)
Kodu Düzenle ve Çalıştır