BaşlayınÜcretsiz Başlayın

Saving custom recipes

The customer has now asked you for a modification in the requirements. This time, they'd like to increase the number of parameters and use the Llama 3.2 model with 3B parameters. You make this modification to your dictionary, and then save it as a YAML file.

The yaml library has been pre-imported.

Bu egzersiz

Fine-Tuning with Llama 3

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Specify the new model requirement, the torchtune.models.llama3_2.llama3_2_3b model, in your dictionary.
  • Save the requirements as a YAML file named custom_recipe.yaml.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

config_dict = {
    # Update the model
    ____,
    "batch_size": 8,
    "device": "cuda",
    "optimizer": {"_component_": "bitsandbytes.optim.PagedAdamW8bit", "lr": 3e-05},
    "dataset": {"_component_": "custom_dataset"},
    "output_dir": "/tmp/finetune_results"
}

# Save the updated configuration to a new YAML file
with open("custom_recipe.yaml", "w") as yaml_file:
    ____
Kodu Düzenle ve Çalıştır