or
Bu egzersiz
Start serving your ML model's predictions via FastAPI endpoints. You'll learn to load pre-trained ML models and create API endpoints to serve predictions as serialized responses over HTTP requests. You'll leverage Pydantic data models to validate requests and responses.
Learn how to serve machine learning models through FastAPI endpoints. This chapter covers creating endpoints that return predictions, handling different types of input data, and implementing robust input validation. You'll build production-ready APIs that can validate different types of input data while having ML models loaded at server startup with zero downtime.
This chapter covers securing APIs with key-based authentication, managing request rates with custom rate limiting, and improving performance through asynchronous processing. You'll learn to protect endpoints, prevent abuse, and handle time-consuming tasks efficiently, preparing your API for production.
This chapter covers advanced topics that will enable you to support FastAPI apps long term in production. Topics include versioning and documenting API endpoints, advanced input validation to support more complex input and output, and monitoring and logging to ensure apps are running correctly and troubleshoot live when they are not.
Geçerli Egzersiz