Sharing model parameters with monitoring
You would like to add a health check endpoint that provides model parameters to your penguin classification API.
The required packages (FastAPI and joblib) have been already imported.
Bu egzersiz
Deploying AI into Production with FastAPI
kursunun bir parçasıdırEgzersiz talimatları
- Add a GET endpoint at the typical location for health checks.
- Capture the model parameters from the sklearn model using the
get_paramsmethod. - Include the model parameters in the response as the value to key
params.
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
model = joblib.load(
'penguin_classifier.pkl'
)
app = FastAPI()
# Create health check endpoint
@app.get("____")
async def get_health():
# Capture the model params
params = ____.get_params()
return {"status": "OK",
# Include model params in response
"params": ____}