Borrower Region by Year
In this exercise you'll tabulate the data by year and the msa
(city vs rural) variable.
Este exercício faz parte do curso
Scalable Data Processing in R
Instruções do exercício
All the required packages are loaded in your workspace.
- Create a function
make_table()
that reads in chunk as a matrix and then tabulates it by borrower region (msa
) and year. - Use
chunk.apply()
to import the data from the file connection we created for you. - Run the rest of the code to plot the changes in mortgages received by region.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# Open a connection to the file and skip the header
fc <- file("mortgage-sample.csv", "rb")
readLines(fc, n = 1)
# Create a function to read chunks
make_table <- function(chunk) {
# Create a matrix
m <- ___(___, sep = ",", type = "integer")
colnames(m) <- mort_names
# Create the output table
___(___, c(___, ___))
}
# Import data using chunk.apply
msa_year_table <- ___
# Close connection
close(fc)
# Convert to a data frame
df_msa <- as.data.frame(msa_year_table)
# Rename columns
df_msa$MSA <- c("rural", "city")
# Gather on all columns except Year
df_msa_long <- pivot_longer(df_msa, -MSA, names_to = "Year", values_to = "Count")
# Plot
ggplot(df_msa_long, aes(x = Year, y = Count, group = MSA, color = MSA)) +
geom_line()