ComeçarComece de graça

Chaining, Graph RAG style!

Now to bring everything together to create a Graph RAG QA chain! You've been provided with the same graph you've worked with throughout this chapter (with some potential variation in the specific nodes and relationships), and you'll connect this with another LLM to generate the Cypher query and return the natural language response.

Este exercício faz parte do curso

Retrieval Augmented Generation (RAG) with LangChain

Ver curso

Instruções do exercício

  • Create a Graph Cypher QA chain using an OpenAI chat model and the graph you've created previously.
  • Invoke the chain with the input provided.
  • Extract and print the result text from the result.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Create the Graph Cypher QA chain
graph_qa_chain = ____.____(
    ____=ChatOpenAI(api_key="", temperature=0), ____, verbose=True
)

# Invoke the chain with the input provided
result = ____({"query": "Who discovered the element Radium?"})

# Print the result text
print(f"Final answer: {result['____']}")
Editar e executar o código