ComeçarComece de graça

Sparse retrieval with BM25

Time to try out a sparse retrieval implementation! You'll create a BM25 retriever to ask questions about an academic paper on RAG, which has already been split into chunks called chunks. An OpenAI chat model and prompt have also been defined as llm and prompt, respectively. You can view the prompt provided by printing it in the console.

Este exercício faz parte do curso

Retrieval Augmented Generation (RAG) with LangChain

Ver curso

Instruções do exercício

  • Create a BM25 sparse retriever from the documents stored in chunks; configure it to return 5 documents in retrieval.
  • Create an LCEL retrieval chain to integrate the BM25 retriever with the llm and prompt provided.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Create a BM25 retriever from chunks
retriever = ____

# Create the LCEL retrieval chain
chain = ({"context": ____, "question": ____}
         | ____
         | ____
         | StrOutputParser()
)

print(chain.invoke("What are knowledge-intensive tasks?"))
Editar e executar o código