ComeçarComece de graça

Mitigating negative KL divergence

You were fine-tuning the model using RLHF techniques and noticed that the model's performance has worsened compared to the base model. You suspect this is due to negative KL divergence, so you want to set the correct generation parameters to prevent this issue.

The tokenizer has been pre-imported.

Este exercício faz parte do curso

Reinforcement Learning from Human Feedback (RLHF)

Ver curso

Instruções do exercício

  • Set top_k and min_length to values that help avoid KL divergence.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

generation_kwargs = {
    # Set min length and top k parameters
    ____, 
  	"top_p": 1.0,
  	"do_sample": True,  
  	"pad_token_id": tokenizer.eos_token_id, 
  	"max_new_tokens": 32}
Editar e executar o código