ComeçarComece de graça

K-means for feedback clustering

You have a dataset of feedback responses, and you've used a GPT model to calculate confidence scores for each response. To identify unusual or outlier feedback, you apply k-means clustering to the low-confidence responses.

The KMeans algorithm, reviews and confidences variables, and np library have been preloaded.

Este exercício faz parte do curso

Reinforcement Learning from Human Feedback (RLHF)

Ver curso

Instruções do exercício

  • Initialize the k-means algorithm. Set the random_state to 42 for code reproducibility.
  • Calculate distances from cluster centers to identify outliers as the difference between data and the corresponding cluster centers.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

def detect_anomalies(data, n_clusters=3):
    # Initialize k-means
    ____
    clusters = kmeans.fit_predict(data)
    centers = kmeans.cluster_centers_

    # Calculate distances from cluster centers
    ____
    return distances
  
anomalies = detect_anomalies(confidences)
print(anomalies)
Editar e executar o código