Predict next character
In this exercise, you will code the function to predict the next character given a trained model. You will use the past 20 chars to predict the next one. You will learn how to train the model in the next lesson, as this step is integral before model training.
This is the initial step to create rules for generating sentences, paragraphs, short texts or other blocks of text as needed.
The variables n_vocab
, chars_window
and the dictionary index_to_char
are already loaded in the environment. Also, the functions below are already created for you:
initialize_X()
: Transforms the text input into a sequence of index numbers with the correct shape.predict_next_char()
: Gets the next character using the.predict()
method of the model class and theindex_to_char
dictionary.
Este exercício faz parte do curso
Recurrent Neural Networks (RNNs) for Language Modeling with Keras
Instruções do exercício
- Define the function
get_next_char()
and add the parametersinitial_text
andchars_window
without default values. - Use
initialize_X()
function and pass variablechar_to_index
to obtain a vector of zeros to be used for prediction. - Use the
predict_next_char()
function to obtain the prediction and store it in thenext_char
variable. - Print the predicted character by applying the defined function on the given
initial_text
.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
def ____(model, ____, ____, char_to_index, index_to_char):
# Initialize the X vector with zeros
X = ____(initial_text, chars_window, ____)
# Get next character using the model
____ = predict_next_char(model, X, ____)
return next_char
# Define context sentence and print the generated text
initial_text = "I am not insane, "
print("Next character: {0}".format(____(model, ____, 20, char_to_index, index_to_char)))