Neste capítulo, abordamos as principais considerações ao treinar o LLMs, como a disponibilidade de dados grandes, a qualidade dos dados, a rotulagem precisa e as implicações de dados tendenciosos. Você também examinará vários riscos do LLM, como privacidade de dados, preocupações éticas e impacto ambiental. Por fim, o capítulo conclui discutindo as áreas de pesquisa emergentes e o cenário em evolução do LLMs.